Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Neurochem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317494

RESUMO

Hormone-sensitive lipase (HSL) is active throughout the brain and its genetic ablation impacts brain function. Its activity in the brain was proposed to regulate bioactive lipid availability, namely eicosanoids that are inflammatory mediators and regulate cerebral blood flow (CBF). We aimed at testing whether HSL deletion increases susceptibility to neuroinflammation and impaired brain perfusion upon diet-induced obesity. HSL-/-, HSL+/-, and HSL+/+ mice of either sex were fed high-fat diet (HFD) or control diet for 8 weeks, and then assessed in behavior tests (object recognition, open field, and elevated plus maze), metabolic tests (insulin and glucose tolerance tests and indirect calorimetry in metabolic cages), and CBF determination by arterial spin labeling (ASL) magnetic resonance imaging (MRI). Immunofluorescence microscopy was used to determine coverage of blood vessels, and morphology of astrocytes and microglia in brain slices. HSL deletion reduced CBF, most prominently in cortex and hippocampus, while HFD feeding only lowered CBF in the hippocampus of wild-type mice. CBF was positively correlated with lectin-stained vessel density. HSL deletion did not exacerbate HFD-induced microgliosis in the hippocampus and hypothalamus. HSL-/- mice showed preserved memory performance when compared to wild-type mice, and HSL deletion did not significantly aggravate HFD-induced memory impairment in object recognition tests. In contrast, HSL deletion conferred protection against HFD-induced obesity, glucose intolerance, and insulin resistance. Altogether, this study points to distinct roles of HSL in periphery and brain during diet-induced obesity. While HSL-/- mice were protected against metabolic syndrome development, HSL deletion reduced brain perfusion without leading to aggravated HFD-induced neuroinflammation and memory dysfunction.

2.
Front Nutr ; 10: 1236153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781111

RESUMO

Background: A multifunctional diet (MFD) combining foods and ingredients with proven functional properties, such as fatty fish and fiber-rich foods, among others, was developed and shown to markedly reduce cardiometabolic risk-associated factors. Objective: Here, we aim at examining metabolic physiological changes associated with these improvements. Methods: Adult overweight individuals without other risk factors were enrolled in an 8-week randomized controlled intervention following a parallel design, with one group (n = 23) following MFD and one group (n = 24) adhering to a control diet (CD) that followed the caloric formula (E%) advised by the Nordic Nutritional Recommendations. Plasma metabolites and lipids were profiled by gas chromatography and ultrahigh performance liquid chromatography/mass spectrometry. Results: Weight loss was similar between groups. The MFD and CD resulted in altered levels of 137 and 78 metabolites, respectively. Out of these, 83 were uniquely altered by the MFD and only 24 by the CD. The MFD-elicited alterations in lipid levels depended on carbon number and degree of unsaturation. Conclusion: An MFD elicits weight loss-independent systematic lipid remodeling, promoting increased circulating levels of long and highly unsaturated lipids. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02148653?term=NCT02148653&draw=2&rank=1, NCT02148653.

3.
Mol Biol Cell ; 34(12): ar124, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703099

RESUMO

Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose-tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics, and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signaling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signaling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Proteínas de Transporte/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Membrana Celular/metabolismo , Insulina/metabolismo , Transdução de Sinais , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo
4.
Obesity (Silver Spring) ; 31(10): 2530-2542, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587639

RESUMO

OBJECTIVE: Some patients regain weight to a variable extent from 1 year after Roux-en-Y gastric bypass surgery (RYGB), though rarely reaching preoperative values. The aim of the present study was to investigate whether, when, and to what extent metabolic remission occurs. METHODS: Fasting metabolite and lipid profiles were determined in blood plasma collected from a nonrandomized intervention study involving 148 patients before RYGB and at 2, 12, and 60 months post RYGB. Both short-term and long-term alterations in metabolism were assessed. Anthropometric and clinical variables were assessed at all study visits. RESULTS: This study found that the vast majority of changes in metabolite levels occurred during the first 2 months post RYGB. Notably, thereafter the metabolome started to return toward the presurgical state. Consequently, a close-to-presurgical metabolome was observed at the time when patients reached their lowest weight and glucose level. Lipids with longer acyl chains and a higher degree of unsaturation were altered more dramatically compared with shorter and more saturated lipids, suggesting a systematic and reversible lipid remodeling. CONCLUSIONS: Remission of the metabolic state was observed prior to notable weight regain. Further and more long-term studies are required to assess whether the extent of metabolic remission predicts future weight regain and glycemic deterioration.


Assuntos
Derivação Gástrica , Humanos , Metaboloma , Antropometria , Aumento de Peso , Lipídeos
5.
RSC Adv ; 13(32): 21945-21953, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483673

RESUMO

Lignin constitutes an impressive resource of high-value low molecular weight compounds. However, robust methods for isolation of the extractable fraction from lignocellulose are yet to be established. In this study, supercritical fluid extraction (SFE) and CO2-expanded liquid extraction (CXLE) were employed to extract lignin from softwood and hardwood chips. Ethanol, acetone, and ethyl lactate were investigated as green organic co-solvents in the extractions. Additionally, the effects of temperature, CO2 percentage and the water content of the co-solvent were investigated using a design of experiment approach employing full factorial designs. Ethyl lactate and acetone provided the highest gravimetric yields. The water content in the extraction mixture had the main impact on the amount of extractable lignin monomers (LMs) and lignin oligomers (LOs) while the type of organic solvent was of minor importance. The most effective extraction was achieved by using a combination of liquid CO2/acetone/water (10/72/18, v/v/v) at 60 °C, 350 bar, 30 min and 2 mL min-1 flow rate. The optimized method provided detection of 13 LMs and 6 lignin dimers (LDs) from the hardwood chips. The results demonstrate the potential of supercritical fluids and green solvents in the field of mild and bening lignin extraction from wood.

6.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876906

RESUMO

Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2 > 0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9-edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.


Assuntos
Adipócitos , Obesidade , Humanos , Adipócitos/metabolismo , Causalidade , Linhagem Celular , Sistemas CRISPR-Cas , Obesidade/genética , Obesidade/metabolismo , Redução de Peso
7.
Food Res Int ; 164: 112422, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737997

RESUMO

A supercritical fluid extraction methodology was used to extract flavoring and bioactive compounds from truffles. Some parameters such as CO2 flow rate (1-3 mg/mL), extraction time (15-90 min) and different trapping food matrices (grape seed oil, gelatin, agar agar and water) were optimized using response surface methodology to enhance extraction and trapping yields. The optimal conditions (2.27 mg/mL CO2 flow rate, 82.5 min when using 40 °C and 30 MPa, with 1 mL grape seed oil as trapping matrix) obtained with Tuber melanosporum were applied to three different truffle species: Terfezia claveryi, Tuber aestivum and Tuber indicum. A total of 32 metabolites were profiled in the extracts using ultra-high-performance supercritical fluid chromatography coupled to quadrupole time-of-flight mass spectrometry. Compounds such as brassicasterol ergosta-7,22-dienol, oleic and linoleic acid were found at similar amounts in all the extracts but other molecules (e.g. fungal sterols) showed a particular distribution depending on the specie studied and whether a trapping matrix was used at the SFE outlet.


Assuntos
Dióxido de Carbono , Ácido Linoleico , Dióxido de Carbono/análise , Ágar , Ácido Linoleico/análise , Óleos de Plantas/química , Sementes/química
8.
Nat Commun ; 14(1): 600, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737436

RESUMO

Aquaglyceroporin 7 (AQP7) facilitates glycerol flux across the plasma membrane with a critical physiological role linked to metabolism, obesity, and associated diseases. Here, we present the single-particle cryo-EM structure of AQP7 determined at 2.55 Å resolution adopting two adhering tetramers, stabilized by extracellularly exposed loops, in a configuration like that of the well-characterized interaction of AQP0 tetramers. The central pore, in-between the four monomers, displays well-defined densities restricted by two leucine filters. Gas chromatography mass spectrometry (GC/MS) results show that the AQP7 sample contains glycerol 3-phosphate (Gro3P), which is compatible with the identified features in the central pore. AQP7 is shown to be highly expressed in human pancreatic α- and ß- cells suggesting that the identified AQP7 octamer assembly, in addition to its function as glycerol channel, may serve as junction proteins within the endocrine pancreas.


Assuntos
Aquagliceroporinas , Aquaporinas , Ilhotas Pancreáticas , Humanos , Aquaporinas/metabolismo , Glicerol/metabolismo , Microscopia Crioeletrônica , Ilhotas Pancreáticas/metabolismo
9.
Microb Cell Fact ; 21(1): 253, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456947

RESUMO

BACKGROUND: Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting D-xylose sugar to ethanol compared to the preferred sugar D-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of D-xylose is similar to the response seen on low concentrations of D-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. RESULTS: Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on D-glucose and downstream intermediates on D-xylose. Moreover, the analysis revealed a preferential formation of D-fructose-6-phosphate from D-xylose, as opposed to the accumulation of D-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on D-fructose. This may indicate a role of PFK27 in D-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (D-glucose and D-galactose) were more affected than the response to those entering downstream of the reaction (D-fructose and D-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (D-glucose with D-fructose, or D-glucose with D-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. CONCLUSIONS: Overall, the sensing assays indicated that the previously observed D-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of D-fructose-6-phosphate could represent attractive engineering targets for improved D-xylose utilization.


Assuntos
Fosfatos Açúcares , Xilose , Glucose , Glucose-6-Fosfato Isomerase/genética , Saccharomyces cerevisiae/genética , Frutose
10.
Mol Metab ; 66: 101629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343918

RESUMO

OBJECTIVE: Ependymin-Related Protein 1 (EPDR1) was recently identified as a secreted human batokine regulating mitochondrial respiration linked to thermogenesis in brown fat. Despite that EPDR1 is expressed in human pancreatic ß-cells and that glucose-stimulated mitochondrial metabolism is critical for stimulus-secretion coupling in ß-cells, the role of EPDR1 in ß-cell metabolism and function has not been investigated. METHODS: EPDR1 mRNA levels in human pancreatic islets from non-diabetic (ND) and type 2 diabetes (T2D) subjects were assessed. Human islets, EndoC-ßH1 and INS1 832/13 cells were transfected with scramble (control) and EPDR1 siRNAs (EPDR1-KD) or treated with human EPDR1 protein, and glucose-stimulated insulin secretion (GSIS) assessed by ELISA. Mitochondrial metabolism was investigated by extracellular flux analyzer, confocal microscopy and mass spectrometry-based metabolomics analysis. RESULTS: EPDR1 mRNA expression was upregulated in human islets from T2D and obese donors and positively correlated to BMI of donors. In T2D donors, EPDR1 mRNA levels negatively correlated with HbA1c and positively correlated with GSIS. EPDR1 silencing in human islets and ß-cell lines reduced GSIS whereas treatment with human EPDR1 protein increased GSIS. Epdr1 silencing in INS1 832/13 cells reduced glucose- and pyruvate- but not K+-stimulated insulin secretion. Metabolomics analysis in Epdr1-KD INS1 832/13 cells suggests diversion of glucose-derived pyruvate to lactate production and decreased malate-aspartate shuttle and the tricarboxylic acid (TCA) cycle activity. The glucose-stimulated rise in mitochondrial respiration and ATP/ADP-ratio was impaired in Epdr1-deficient cells. CONCLUSION: These results suggests that to maintain glucose homeostasis in obese people, upregulation of EPDR1 may improve ß-cell function via channelling glycolysis-derived pyruvate to the mitochondrial TCA cycle.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Piruvatos , Obesidade , RNA Mensageiro
11.
Acta Physiol (Oxf) ; 236(4): e13884, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056607

RESUMO

AIM: The influence of dietary carbohydrates and fats on weight gain is inconclusively understood. We studied the acute impact of these nutrients on the overall metabolic state utilizing the insulin:glucagon ratio (IGR). METHODS: Following in vitro glucose and palmitate treatment, insulin and glucagon secretion from islets isolated from C57Bl/6J mice was measured. Our human in vivo study included 21 normoglycaemia (mean age 51.9 ± 16.5 years, BMI 23.9 ± 3.5 kg/m2 , and HbA1c 36.9 ± 3.3 mmol/mol) and 20 type 2 diabetes (T2D) diagnosed individuals (duration 12 ± 7 years, mean age 63.6 ± 4.5 years, BMI 29.1 ± 2.4 kg/m2 , and HbA1c 52.3 ± 9.5 mmol/mol). Individuals consumed a carbohydrate-rich or fat-rich meal (600 kcal) in a cross-over design. Plasma insulin and glucagon levels were measured at -30, -5, and 0 min, and every 30 min until 240 min after meal ingestion. RESULTS: The IGR measured from mouse islets was determined solely by glucose levels. The palmitate-stimulated hormone secretion was largely glucose independent in the analysed mouse islets. The acute meal tolerance test demonstrated that insulin and glucagon secretion is dependent on glycaemic status and meal composition, whereas the IGR was dependent upon meal composition. The relative reduction in IGR elicited by the fat-rich meal was more pronounced in obese individuals. This effect was blunted in T2D individuals with elevated HbA1c levels. CONCLUSION: The metabolic state in normoglycaemic individuals and T2D-diagnosed individuals is regulated by glucose. We demonstrate that consumption of a low carbohydrate diet, eliciting a catabolic state, may be beneficial for weight loss, particularly in obese individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Adulto , Idoso , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas , Insulina/metabolismo , Nutrientes , Obesidade , Palmitatos , Estudos Cross-Over
12.
Environ Microbiol ; 24(10): 4869-4884, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35799549

RESUMO

Antibiotic resistance is currently an extensive medical challenge worldwide, with global numbers increasing steadily. Recent data have highlighted wastewater treatment plants as a reservoir of resistance genes. The impact of these findings for human health can best be summarized using a One Health concept. However, the molecular mechanisms impacting resistance spread have not been carefully evaluated. Bacterial viruses, that is bacteriophages, have recently been shown to be important mediators of bacterial resistance genes in environmental milieus and are transferrable to human pathogens. Herein, we investigated the biogeographical impact on resistance spread through river-borne bacteriophages using amplicon deep sequencing of the microbiota, absolute quantification of resistance genes using ddPCR, and phage induction capacity within wastewater. Microbial biodiversity of the rivers is significantly affected by river site, surrounding milieu and time of sampling. Furthermore, areas of land associated with agriculture had a significantly higher ability to induce bacteriophages carrying antibiotic resistance genes, indicating their impact on resistance spread. It is imperative that we continue to analyse global antibiotic resistance problem from a One Health perspective to gain novel insights into mechanisms of resistance spread.


Assuntos
Bacteriófagos , Agricultura , Antibacterianos/farmacologia , Bacteriófagos/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Humanos , Águas Residuárias/microbiologia
13.
Nature ; 606(7912): 113-119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585233

RESUMO

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , Tetraploidia
14.
Aging Dis ; 13(1): 267-283, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111373

RESUMO

Diabetes impacts on brain metabolism, structure, and function. Alterations in brain metabolism have been observed in obesity and diabetes models induced by exposure to diets rich in saturated fat and/or sugar and have been linked to memory impairment. However, it remains to be determined whether brain dysfunction induced by obesogenic diets results from permanent brain alterations. We tested the hypothesis that an obesogenic diet (high-fat and high-sucrose diet; HFHSD) causes reversible changes in hippocampus and cortex metabolism and alterations in behavior. Mice were exposed to HFHSD for 24 weeks or for 16 weeks followed by 8 weeks of diet normalization. Development of the metabolic syndrome, changes in behavior, and brain metabolite profiles by magnetic resonance spectroscopy (MRS) were assessed longitudinally. Control mice were fed an ingredient-matched low-fat and low-sugar diet. Mice fed the HFHSD developed obesity, glucose intolerance and insulin resistance, with a more severe phenotype in male than female mice. Relative to controls, both male and female HFHSD-fed mice showed increased anxiety-like behavior, impaired memory in object recognition tasks, but preserved working spatial memory as evaluated by spontaneous alternation in a Y-maze. Alterations in the metabolite profiles were observed both in the hippocampus and cortex but were more distinct in the hippocampus. HFHSD-induced metabolic changes included altered levels of lactate, glutamate, GABA, glutathione, taurine, N-acetylaspartate, total creatine and total choline. Notably, HFHSD-induced metabolic syndrome, anxiety, memory impairment, and brain metabolic alterations recovered upon diet normalization for 8 weeks. In conclusion, cortical and hippocampal derangements induced by long-term HFHSD consumption are reversible rather than being the result of permanent tissue damage.

15.
J Pharm Biomed Anal ; 209: 114487, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34864593

RESUMO

Antibiotic residues are being continuously recognized in the aquatic environment and in food. Though the concentration of antibiotic residues is typically low, adverse effects on the environment and human health have been observed. Hence, an efficient method to determine numerous antibiotic residues should be simple, inexpensive, selective, with high throughput and with low detection limits. Liquid-based extractions have been exceedingly used for clean-up and preconcentration of antibiotics prior to chromatographic analysis. In order to make methods more green and environmentally sustainable, conventional hazardous organic solvents can be replaced with green solvents. This review presents sampling strategies as well as comprehensive and up-to-date methods for chemical analysis of antibiotic residues in different sample matrices. Particularly, solvent-based sample preparation techniques using green solvents are discussed along with applications in antibiotic residue analysis.


Assuntos
Antibacterianos , Cromatografia Gasosa , Humanos , Solventes
16.
Sci Rep ; 10(1): 11561, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665614

RESUMO

Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual ß-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.


Assuntos
Peptídeo C/sangue , Complicações do Diabetes/genética , Diabetes Mellitus Tipo 1/genética , Nucleotídeos/sangue , Idoso , Biomarcadores/sangue , Glicemia , Complicações do Diabetes/sangue , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/patologia , Feminino , Predisposição Genética para Doença , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Metabolômica , Pessoa de Meia-Idade , Nucleotídeos/biossíntese
17.
Diabetes ; 69(9): 2027-2035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527768

RESUMO

Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.


Assuntos
Restrição Calórica/métodos , Diabetes Mellitus Tipo 2/cirurgia , Jejum/sangue , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Adulto , Glicemia/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Período Pós-Prandial
18.
ChemSusChem ; 13(17): 4605-4612, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468723

RESUMO

Lignin is the second most abundant biopolymer in nature and a promising renewable resource for aromatic chemicals. For the understanding of different lignin isolation and conversion processes, the identification of phenolic compounds is of importance. However, given the vast number of possible chemical transformations, the prediction of produced phenolic structures is challenging and a nontargeted analysis method is therefore needed. In this study, a nontargeted analysis method has been developed for the identification of phenolic compounds by using an ultrahigh-performance supercritical fluid chromatography-high-resolution multiple stage tandem mass spectrometry method, combined with a Kendrick mass defect-based classification model. The method is applied to a Lignoboost Kraft lignin (LKL), a sodium lignosulfonate lignin (SLS), and a depolymerized Kraft lignin (DKL) sample. In total, 260 tentative phenolic compounds are identified in the LKL sample, 50 in the SLS sample, and 77 in the DKL sample.

19.
Sci Rep ; 10(1): 4031, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132596

RESUMO

Vascular bio-scaffolds produced from decellularized tissue offer a promising material for treatment of several types of cardiovascular diseases. These materials have the potential to maintain the functional properties of the extracellular matrix (ECM), and allow for growth and remodeling in vivo. The most commonly used methods for decellularization are based on chemicals and enzymes combinations, which often damage the ECM and cause cytotoxic effects in vivo. Mild methods involving pressurized CO2-ethanol (EtOH)-based fluids, in a supercritical or near supercritical state, have been studied for decellularization of cardiovascular tissue, but results are controversial. Moreover, data are lacking on the amount and type of lipids remaining in the tissue. Here we show that pressurized CO2-EtOH-H2O fluids (average molar composition, ΧCO2 0.91) yielded close to complete removal of lipids from porcine pulmonary arteries, including a notably decrease of pro-inflammatory fatty acids. Pressurized CO2-limonene fluids (ΧCO2 0.88) and neat supercritical CO2 (scCO2) achieved the removal of 90% of triacylglycerides. Moreover, treatment of tissue with pressurized CO2-limonene followed by enzyme treatment, resulted in efficient DNA removal. The structure of elastic fibers was preserved after pressurized treatment, regardless solvent composition. In conclusion, pressurized CO2-ethanol fluids offer an efficient tool for delipidation in bio-scaffold production, while pressurized CO2-limonene fluids facilitate subsequent enzymatic removal of DNA.


Assuntos
Dióxido de Carbono/química , Matriz Extracelular/química , Artéria Pulmonar/química , Tecidos Suporte/química , Animais , Artéria Pulmonar/transplante , Suínos
20.
J Mol Biol ; 432(5): 1429-1445, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31325441

RESUMO

The islets of Langerhans harbor multiple endocrine cell types that continuously respond to circulating nutrient levels in order to adjust their secretion of catabolic and anabolic hormones. Stimulus-secretion coupling in these cells is largely of metabolic nature; that is, metabolism of nutrient fuels yields signals that trigger and amplify secretion of hormones. Hence, metabolism in this micro-organ is in a major way in control of whole-body metabolism. Therefore, insights into islet metabolism are critical to understand how secretion of insulin is regulated and why it is perturbed in type 2 diabetes. Metabolomics aims at characterizing a wide spectrum of metabolites in cells, tissues and body fluids. For this reason, this technique is well suited to supply information on stimulus-secretion coupling. Here, we summarize metabolomics studies in islets and ß-cells, highlight important discoveries that would have been difficult to make without this technology but also raise awareness of challenges and bottlenecks that curtail its use in metabolic research.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Humanos , Insulina/metabolismo , Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Nutrientes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...